Next Generation: Synthetic Phospholipids Track Cancer

Scientists generate tumor-targeting molecules that can be used for imaging and treatment.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Fluorescent CLR1501 in pancreatic cancer cellsWEICHERT ET AL.The compounds: Phospholipid ethers (PLEs) are naturally occurring molecules that accumulate in the membranes of cancer cells, but not healthy cells. Using radioactive and fluorescent analogs of PLEs, scientists at the University of Wisconsin and from the firm Cellectar Biosciences, both in Madison, are now tracking and treating tumors in animals and patients. Their findings are reported today (June 11) in Science Translational Medicine.

“They’ve identified a type of lipid that is usually expressed by cancers but not by normal cells and they’ve taken advantage of this observation,” said Jeremy Rich from the Cleveland Clinic Lerner Research Institute in Ohio, who was not involved in the work.

Although researchers have known for more than 40 years that PLEs accumulate in cancer cells, it is not clear why. “Normal cells seem to metabolize them [PLEs] . . . break them down and eliminate them,” said John Kuo, a professor of neurological surgery and human oncology at the University of Wisconsin, who led the study. For some reason, that metabolic process appears to be amiss in most cancer cells. “Maybe because they’re dividing so quickly they just don’t dot their Is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH