Not All Stem Cells Created Equal

Compared to induced pluripotent stem cells generated from somatic cells, stem cells created by nuclear transfer appear to be closer to the genetic state of embryonic cells.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Human nuclear transfer embryonic stem cells expressing OCT-4 marker of early embryosCOURTESY OF OHSU CENTER FOR EMBRYONIC CELL AND GENE THERAPYIn the process of converting a somatic cell to a stem cell, researchers have questioned whether the resulting cells retain characteristics of their prior, non-stem-cell states. Applying two pioneering approaches to create human pluripotent stem cells from somatic cells—by inducing pluripotent stem cells (iPSCs) or using a process called somatic cell nuclear transfer (SCNT)—researchers from Oregon Health & Science University (OHSU) and their colleagues have compared the genomic and epigenomic landscapes of the resulting cell types. They found that the genomes of stem cells created through SCNT more closely match those of embryonic stem cells (ESCs) derived from early human embryos. The team’s comparative analysis was published today (July 2) in Nature.

Shoukhrat Mitalipov, a reproductive biologist and director of the Center for Embryonic Cell and Gene Therapy at OHSU, led the team that developed the SCNT approach just last year. For the present study, Mitalipov said he and his coauthors wanted to better understand the degree to which this new class of pluripotent cells were comparable to iPSCs.

Both iPSCs and SCNT-derived cells showed similar numbers of acquired genomic deletions and duplications. But while the iPSCs retained some of the epigenetic and gene expression patterns of their parental somatic counterparts, the SCNT-derived cells had transcriptional and epigenetic patterns that were more like in vitro fertilized (IVF) ESCs, which are considered the most authentic form of ESCs, as they are directly isolated from human embryos.

Unlike IVF ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies