Not All Stem Cells Created Equal

Compared to induced pluripotent stem cells generated from somatic cells, stem cells created by nuclear transfer appear to be closer to the genetic state of embryonic cells.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Human nuclear transfer embryonic stem cells expressing OCT-4 marker of early embryosCOURTESY OF OHSU CENTER FOR EMBRYONIC CELL AND GENE THERAPYIn the process of converting a somatic cell to a stem cell, researchers have questioned whether the resulting cells retain characteristics of their prior, non-stem-cell states. Applying two pioneering approaches to create human pluripotent stem cells from somatic cells—by inducing pluripotent stem cells (iPSCs) or using a process called somatic cell nuclear transfer (SCNT)—researchers from Oregon Health & Science University (OHSU) and their colleagues have compared the genomic and epigenomic landscapes of the resulting cell types. They found that the genomes of stem cells created through SCNT more closely match those of embryonic stem cells (ESCs) derived from early human embryos. The team’s comparative analysis was published today (July 2) in Nature.

Shoukhrat Mitalipov, a reproductive biologist and director of the Center for Embryonic Cell and Gene Therapy at OHSU, led the team that developed the SCNT approach just last year. For the present study, Mitalipov said he and his coauthors wanted to better understand the degree to which this new class of pluripotent cells were comparable to iPSCs.

Both iPSCs and SCNT-derived cells showed similar numbers of acquired genomic deletions and duplications. But while the iPSCs retained some of the epigenetic and gene expression patterns of their parental somatic counterparts, the SCNT-derived cells had transcriptional and epigenetic patterns that were more like in vitro fertilized (IVF) ESCs, which are considered the most authentic form of ESCs, as they are directly isolated from human embryos.

Unlike IVF ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo