Novel DNA-Sensing Pathway Found in Human Cells, Absent in Mice

This previously unknown mechanism for spotting foreign genetic material in the cytoplasm launches antiviral defenses even when the well-known immune mediator STING is absent.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, SVISIO

Researchers at the University of Washington have discovered a novel DNA-sensing pathway that launches an antiviral response to foreign genetic material in human cells.

Triggered by an enzyme called DNA protein kinase (DNA-PK), the newly found pathway is independent of the cGAS-STING pathway—until now considered the main regulator of mammalian innate immune responses to DNA—and is missing or inactive in mouse cells. The finding raises questions about the promise of therapies that target cGAS-STING for immune modulation, researchers report today (January 24) in Science Immunology.

“This seems to be a DNA-sensing pathway that’s been completely overlooked—probably because much of the research that has been done has used murine systems,” says Christian Holm, who researches cGAS-STING at Aarhus University and was not involved in the study. Previous work on antiviral responses has focused almost exclusively on cGAS-STING, he adds. “Now this comes along and says there’s this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies