One Antigen Receptor Induces Two T cell Types

Precursor T cells bearing the same antigen receptor adopt two different fates in mice.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NIAID/NIHEach newly-formed T cell bears a unique T cell receptor (TCR) that recognizes a particular antigen. But how a given TCR shapes the fate of its cell and that cell’s progeny was largely unknown. Today (August 26), scientists at MIT report in Science Immunology on their discovery that precursor T cells with precisely the same TCR don’t necessarily follow the same developmental path.

“The main take-home message is that T cells with identical specificity . . . can really differentiate into very distinct subtypes of T cell depending on the environment in which they are located,” said mucosal immunologist Daniel Mucida of Rockefeller University in New York who was not involved in the study.

During T cell development, the genes encoding the TCR are shuffled and recombined by special genetic mechanisms to create an individual version of the receptor protein expressed on the cell’s surface. A variety of T cell types exist: some, like helper and cytotoxic T cells, promote strong immune responses against foreign invaders, while others. like T regulatory cells (T regs), suppress excessive inflammation. It has been observed that the repertoire of TCRs found on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo