Organs on Chips

Scientists hope that these devices will one day replace animal models of disease and help advance personalized medicine.

Written byDiana Kwon
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

From beating hearts to breathing lungs, organs-on-chips are some of hottest new tools for human biology research. Although these devices may bear closer resemblance to computer components than human body parts, scientists have now created working models for a whole range of organs, including the liver, the lung, and even the female reproductive system.

Researchers hope to use these devices to model disease and facilitate drug development. “I think for most people, the goal is to replace animal testing and to carry out personalized medicine in a more effective way,” Donald Ingber, the founding director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, tells The Scientist.

Little Lungs

A lung alveolus chip with air-filled (yellow) and blood-like medium-filled (blue) channels, both lined with human cells to mimic organ-level function. WYSS INSTITUTE AT HARVARD UNIVERSITY

At the Wyss Institute, scientists have developed about 15 different human organs on chips. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series