Magnetic resonance image and positron emission tomography of the brain of a monkey that received grafts (represented as white regions in T2 weighted images). Position emission tomography showed that the uptake of [18F]DOPA gradually increased after transplantation. Dotted lines outline the putamen.CENTER FOR IPS CELL RESEARCH AND APPLICATION, KYOTO UNIVERSITYCell therapy for Parkinson’s disease (PD) is closer than ever. In a study published today (August 30) in Nature, an international team of researchers improved symptoms in a monkey model of PD by grafting dopamine-producing neurons derived from human induced pluripotent stem cells (iPSCs) into the monkeys’ brains.
“This is an important step in the translation of iPSC-derived technology to clinical cell transplants in Parkinson’s,” Patrik Brundin, a neuroscientist at the Van Andel Institute in Michigan who did not participate in the work, tells The Scientist. “There were no major surprises, but these were essential experiments that were required before moving forward to clinical trials.”
Kyoto University neurosurgeon Jun Takahashi and colleagues generated eight iPSC lines from skin or blood cells collected from seven human subjects—three with PD and four without—and derived dopaminergic progenitors from these cell lines. Then, the researchers grafted the reprogrammed cells into the brains of 2- to 3-year-old, male cynomolgus monkeys (Macaca fascicularis) that had been treated with the neurotoxin MPTP, which kills dopamine-releasing neurons and results in PD-like ...