Parkinson’s Disease Cell Therapy Relieves Symptoms in Monkeys

Neurons derived from human induced pluripotent stem cells fill in for lost dopamine neurons in a primate model of the disease.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Magnetic resonance image and positron emission tomography of the brain of a monkey that received grafts (represented as white regions in T2 weighted images). Position emission tomography showed that the uptake of [18F]DOPA gradually increased after transplantation. Dotted lines outline the putamen.CENTER FOR IPS CELL RESEARCH AND APPLICATION, KYOTO UNIVERSITYCell therapy for Parkinson’s disease (PD) is closer than ever. In a study published today (August 30) in Nature, an international team of researchers improved symptoms in a monkey model of PD by grafting dopamine-producing neurons derived from human induced pluripotent stem cells (iPSCs) into the monkeys’ brains.

“This is an important step in the translation of iPSC-derived technology to clinical cell transplants in Parkinson’s,” Patrik Brundin, a neuroscientist at the Van Andel Institute in Michigan who did not participate in the work, tells The Scientist. “There were no major surprises, but these were essential experiments that were required before moving forward to clinical trials.”

Kyoto University neurosurgeon Jun Takahashi and colleagues generated eight iPSC lines from skin or blood cells collected from seven human subjects—three with PD and four without—and derived dopaminergic progenitors from these cell lines. Then, the researchers grafted the reprogrammed cells into the brains of 2- to 3-year-old, male cynomolgus monkeys (Macaca fascicularis) that had been treated with the neurotoxin MPTP, which kills dopamine-releasing neurons and results in PD-like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH