PARP Inhibitors Are Improving the Outlook of Hard-to-Treat Cancers

With three recent FDA approvals, and a number of Phase 3 trials ongoing, the drugs are seeing a surge in interest.

Written byVicki Brower
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© RUDALL30/SHUTTERSTOCK.COM

In 2005, researchers in the U.K. struck upon a new way to kill cancer cells. A London-based team led by Alan Ashworth, currently head of the University of California, San Francisco’s cancer center, was working with cells harboring BRCA mutations—genetic perturbations that predispose humans to breast and other cancers. BRCA1 and BRCA2 proteins are part of the cell’s homologous recombination (HR) machinery, and help repair double-strand breaks in DNA. When they are dysfunctional, cells accumulate mutations.

Ashworth and his team wondered whether BRCA1 or BRCA2 (BRCA1/2) mutations, in addition to making a cell susceptible to cancer, also made that cell more vulnerable in the event of further damage to its DNA repair machinery. So the researchers tried targeting a different pathway in these cells—one that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH