Q&A: Whole Genomes of 150,000 Britons Reveal Novel Genetic Variants

Height and onset of menarche are among traits linked to previously unidentified genetic variants in noncoding regions of the human genome.

Written bySophie Fessl, PhD
| 5 min read
genome sequence text on screen
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

One of the many surprises to stem from sequencing the human genome was the revelation that protein-coding sequences make up a relatively small proportion of our DNA. These exons, collectively known as the exome, account for less than 2 percent of the human genome. Still, scientists often search through exomes for the genetic basis of diseases—and such searches have proven fruitful, identifying the culprits behind rare diseases and pathological genetic changes in tumors. But researchers are increasingly realizing that whole-exome sequencing tells only part of the story: Mutations in noncoding regions of the genome can also cause disease—for example, by affecting the transcription of a gene.

To begin to uncover some of these overlooked effects, researchers recently analyzed the whole genome sequences of more than 150,000 individuals from the UK Biobank, a massive database that contains DNA samples and phenotypic data from 500,000 individuals. Their findings, published July 20 in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH