Ribosomal DNA Can Predict an Animal’s Age

A clock constructed of rDNA methylation sites can estimate both chronological and biological age across species.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM,
BESTDESIGNS

DNA methylation status in a variety of tissues can accurately reveal the age of an animal, but previously discovered epigenetic clocks often aren’t evolutionarily conserved. In a study published today (February 14) in Genome Research, researchers describe a new clock, composed of methylation sites in ribosomal DNA. This timekeeper is found in species as diverse as mice, dogs, and humans, and reveals both chronological and biological age.

“It’s really interesting that the same kinds of methylation changes that have been observed over age in the main genome of mammals have also been found in . . . ribosomal DNA,” says Trey Ideker, a biologist at the University of California, San Diego, who did not participate in the study. “These ribosomal DNA changes are simply not measured by the methylation profiling everyone else is doing. They’ve filled in a blind spot.”

The nucleolus is the part of a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits