SARS-CoV-2 Disables Key Components of Human Cells’ Defense System

Researchers detail how viral proteins interact with host RNA to disrupt the cell’s ability to fight back against infection.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: A mammalian cell infected with SARS-CoV-2, showing the formation of compartments where viral RNA is replicated (top left) and individual virions exiting the cell (right)
EMILY BRUCE

Viral proteins encoded by SARS-CoV-2 disrupt critical components of human cells’ molecular machinery and disable responses to infection, according to a study published October 8 in Cell. Researchers in the US describe how specific viral proteins bind to human RNAs involved in RNA splicing, protein translation, and protein trafficking, and in doing so suppress the host cell’s coordination of a key antiviral defense known as the type I interferon response.

The study offers a possible mechanistic explanation for the blunted immune responses observed in some COVID-19 patients, says Benjamin Terrier, an immunologist at Cochin Hospital in Paris who was not involved in the work. The researchers “are clearly demonstrating how the virus is able to impair the production of proteins involved in [this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH