ABOVE: © istock.com, D3Damon
In the 1980s, a promising new drug target emerged in the battle against cancer. Known as c-Myc, the protein is encoded by one of the first cellular oncogenes discovered in humans and has since been found to be dysregulated in more than 50 percent of all human cancers. The peptide acts as a transcription factor, promoting the expression of genes involved in the cell cycle, cell death, and tumorigenesis. This made it an obvious target for anticancer drugs.
However, despite decades of concerted effort by academic labs and pharmaceutical companies across the world, c-Myc has proved frustratingly difficult to drug. One of the largest obstacles, researchers discovered, is that the protein’s relatively smooth three-dimensional structure leaves almost no pockets or crevices for therapeutic molecules to bind.
C-Myc is far from a unique case. While cancer often features dysfunctional proteins produced as a result of oncogenic mutations, ...