“Smarter” CAR T Cells Target Tumors with Precision

Two studies in mice now show that researchers can control when and where CAR T cells are active, potentially overcoming previous hurdles for CAR T–based treatments.

Written byNatalia Mesa, PhD
| 5 min read
3D illustration of T cell attached to protein
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Chimeric antigen receptor T cells, better known as CAR T cells, are powerful immunotherapy agents derived from a cancer patient’s existing immune cells and engineered to fight their specific tumors. However, as successful as they are in treating some cancers, they fail at treating others, such as pancreatic tumors, which develop clever ways of avoiding immune detection.

But such failures may soon be a thing of the past: In two new mouse studies published in Science on December 15, researchers unveiled tactics for creating manipulatable CAR T cells. The researchers behind the works say that, thanks to the new approaches, they may be able to overcome the current hurdles facing CAR T therapies. The new techniques allow them to control when and where CAR T cells are active, targeting tumors at specific times and keep CAR T cells from becoming less effective over time, which often happens during cancer.

Grégoire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH