Stem Cell Lines Riddled With Undetected Mutations

Most of the human induced pluripotent stem cells stored at major cell line repositories and used in research harbor thousands of DNA errors, a study finds, highlighting the need for improved quality control measures.

Written byDan Robitzski
| 4 min read
Artist’s rendition of a blue-green DNA double helix, viewed lengthwise from within one end.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Stem cell research that uses pluripotent stem cells derived from human skin or blood cells has led to numerous discoveries, aided drug development, and proven useful in gene therapies. However, many of these human induced pluripotent stem cell (hiPSC) lines banked in repositories or developed in labs likely harbor thousands of undetected mutations, casting doubt on how generalizable the findings made with them can be, according to research published yesterday (August 11) in Nature Genetics. According to study coauthor and Cambridge Biomedical Research Campus medical geneticist Serena Nik-Zainal, the study reveals that the level of quality control involved in such stem cell research may not be up to snuff.

Researchers make hiPSCs by harvesting somatic cells—often from skin—from a person and then reprogramming them to enter an embryonic-like state. Nik-Zainal says that she and her colleagues were clued in to the widespread presence of mutations years ago when they noticed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies