Study Reveals Outsize Role of mRNA Region in Tuning Expression

A new method helps researchers uncover the rules of ribosome recruitment in yeast.

Written bySophie Fessl, PhD
| 3 min read
illustration of a large purple molecular complex with a strand of orange RNA running through it and red strand emerging from it
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

When it comes to controlling the amount of protein made based on a gene’s code, cells have a variety of tools at their disposal: attaching epigenetic marks to a gene can make it less accessible to be copied into mRNA, for example, or cells can make more or fewer of the transcription factors that get the process started. Now, a paper published on January 17 in Cell Systems uses a novel method to zero in on a lesser-studied control mechanism: small changes in an mRNA’s start region that affect how efficiently the transcript attracts ribosomes, and thus how much protein is churned out.

“This study uses an ingenious way of being able to monitor ribosome binding” to the start regions, Maria Barna, a geneticist at Stanford University who was not involved in the study, tells The Scientist. Using this method, the researchers “identified a whole slew of potential cis-regulatory elements, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH