Technique Adapted from CRISPR-Cas9 Corrects Mutation in Human Embryos

Researchers use base-editing to swap out an erroneous nucleotide responsible for a potentially life-threatening blood disorder.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, DR_MICROBEA team of Chinese researchers who were the first to report having applied CRISPR to human embryos have done it again—this time upgrading their technique to base-editing, a method of genome editing that corrects point mutations with higher efficiency than traditional CRISPR-Cas9 techniques. The scientists corrected a single nucleotide error responsible for β thalassemia, a potentially life-threatening blood disorder, according to a study published last week (September 23) in Protein and Cell.

Although the resulting embryos were mosaic—that is, they contained both corrected and uncorrected cells—the technique has the potential for higher precision than previous approaches.

“The paper itself represents a significant technical advance,” Darren Griffin, a geneticist at the University of Kent in the U.K., tells The Guardian. “Rather than using the classic Crispr technology previously reported, the current ‘base editor’ technology is an adaptation that chemically alters the DNA bases themselves.”

Unlike older technologies, base-editing does not cleave the DNA when it makes an edit—a feature associated with fewer harmful side effects. To test the approach in humans, the Sun Yat-sen University researchers created cloned embryos using tissue from a patient with β thalassemia, which affects around 1 in 100,000 people worldwide, and has been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies