Telomeres in Disease

Telomeres have been linked to numerous diseases over the years, but how exactly short telomeres cause diseases and how medicine can prevent telomere erosion are still up for debate.

Written byRodrigo Calado and Neal Young
| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

PHOTORESEARCHERS, HYBRID MEDICAL (MANIPULATION BY LUCY READING-IKKANDA)

The ends of linear chromosomes have attracted serious scientific study—and Nobel Prizes—since the early 20th century. Called telomeres, these ends serve to protect the coding DNA of the genome. When a cell’s telomeres shorten to critical lengths, the cell senesces. Thus, telomeres dictate a cell’s life span—unless something goes wrong. Work over the past several decades has revealed an active, though limited, mechanism for the normal enzymatic repair of telomere loss in certain proliferative cells.[1. E.H. Blackburn et al., “Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging,” Nat Med, 12:1133-38, 2006.] Telomere lengthening in cancer cells, however, confers an abnormal proliferative ability.

In addition to cancer, telomeres have been found to be involved in numerous other diseases, including ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH