The Sooner, The Better

New approaches to diagnosing bacterial infections may one day allow the identification of pathogens and their antibiotic susceptibility in a matter of hours or minutes.

Written byNicholette Zeliadt
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MAGNETIC DETECTION: To identify bacteria by NMR, researchers first extract total RNA from bacteria and use PCR to amplify the 16S RNA as 16S DNA, one end of which can be captured by microbeads (1–3 μm in diameter) coated with a covalently bound DNA probe. DNA conjugated to magnetic nanoparticles (20–30 nm) binds to the opposite end of the target DNA, forming a magnetic DNA sandwich that can be detected by nuclear magnetic resonance (NMR)THE SCIENTIST STAFFWhen someone shows up at the doctor’s office with signs of an infection, chances are good that the physician will diagnose the ailment using methods that have changed little during the past century. After inquiring about symptoms, the doctor might collect a sample of blood, urine, or some other bodily fluid and send it to a clinical lab where it will be cultured and examined under a microscope. If bacteria are present, the lab might conduct additional culture-based tests to determine the species and its susceptibility to various antibiotics.

Depending on the microbe’s propensity to grow in culture and the amount of it present in the sample, it can take a day or longer for the lab to identify the pathogen, and an additional one to two days to get the antibiotic susceptibility results. But in many cases it can be impractical or risky for a clinician to wait for those results before initiating treatment. Therefore, he or she will make an educated guess as to the cause of the infection and might send the patient home with a prescription for a broad-spectrum antibiotic capable of ridding the body of a number of bacterial pathogens.

This practice means that doctors sometimes prescribe antibiotics when they are not necessary, potentially leading to harmful side effects ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies