The Sooner, The Better

New approaches to diagnosing bacterial infections may one day allow the identification of pathogens and their antibiotic susceptibility in a matter of hours or minutes.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MAGNETIC DETECTION: To identify bacteria by NMR, researchers first extract total RNA from bacteria and use PCR to amplify the 16S RNA as 16S DNA, one end of which can be captured by microbeads (1–3 μm in diameter) coated with a covalently bound DNA probe. DNA conjugated to magnetic nanoparticles (20–30 nm) binds to the opposite end of the target DNA, forming a magnetic DNA sandwich that can be detected by nuclear magnetic resonance (NMR)THE SCIENTIST STAFFWhen someone shows up at the doctor’s office with signs of an infection, chances are good that the physician will diagnose the ailment using methods that have changed little during the past century. After inquiring about symptoms, the doctor might collect a sample of blood, urine, or some other bodily fluid and send it to a clinical lab where it will be cultured and examined under a microscope. If bacteria are present, the lab might conduct additional culture-based tests to determine the species and its susceptibility to various antibiotics.

Depending on the microbe’s propensity to grow in culture and the amount of it present in the sample, it can take a day or longer for the lab to identify the pathogen, and an additional one to two days to get the antibiotic susceptibility results. But in many cases it can be impractical or risky for a clinician to wait for those results before initiating treatment. Therefore, he or she will make an educated guess as to the cause of the infection and might send the patient home with a prescription for a broad-spectrum antibiotic capable of ridding the body of a number of bacterial pathogens.

This practice means that doctors sometimes prescribe antibiotics when they are not necessary, potentially leading to harmful side effects ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo