Track Your Package

How to follow stem cells transplanted into living tissue.

Written byAmber Dance
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Stem cells could deliver tumor-busting drugs, repair damaged brains, and even mend a (literally) broken heart. But first, scientists must figure out how to get these jacks-of-all-trades where they’re needed and ensure that they survive long enough to do their work.

Achieving this objective requires being able to observe the cells after they’re set loose inside a living, breathing animal. Of course, scientists can make tissue slices and use histology to look for the cells, but that offers only a snapshot of one final time point.

“If you want to understand what happens to these stem cells, it’s important to track the fate of these cells without having to kill the animal,” says Joseph Wu, a cardiologist at Stanford University School of Medicine in Palo Alto, California. Stem cell transplants may settle down, proliferate, and differentiate as desired; they may form dangerous tumors; or they may simply falter and die.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH