Transplanted Fecal Microbes Stick Around

Donor bacteria coexist with a recipient’s own for three months after a fecal transplant.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Antibiotic treatment eliminates many commensal bacterial species from the gut lumen, but fecal transplants can restore a healthy microbial community.SCIENCE, E. PAMER ET AL.New research casts some light on what happens to a patient’s gut microbiome after a fecal microbiota transplant (FMT). Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and their colleagues sequenced the DNA of bacterial strains in patients with metabolic syndrome who each received an FMT, finding that donor strains persisted in the recipients’ guts for up to three months following the procedure. In their paper, published today (April 28) in Science, the researchers also examined FMT donor-recipient compatibility.

“It was a well-done study,” Vincent Young, a professor of internal medicine at the University of Michigan who was not involved in the work, told The Scientist. Previous studies have shown that certain species of donor bacteria persist after a FMT. What’s new here, Young said, “is the method they used to analyze metagenomics at the strain level.”

FMTs, in which stool microbes from a healthy donor are transplanted into a recipient, have been shown to be a successful treatment for recurrent Clostridium difficile infection, and are being investigated for a number of other gastrointestinal disorders. But the procedure is usually preceded by an antibiotic blitz, which wipes out any existing microbial communities in the recipient’s gut, making it difficult to assess a patient’s microbiome ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH