Two Genes Conspire in Endometriosis and Cancer to Help Cells Migrate

The genes promote the migration of endothelial cells outside of the uterus, a characteristic of both endometriosis and endometrial cancers, a study of mice and human tissue finds.

Written byEmma Yasinski
| 3 min read
arida1 pi3ka gene endometriosis uterine cancer uterus cell migration

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, SV_SUNNY

Two well-known gene mutations work in tandem to allow endometrial cells, the cells that line the uterus, to migrate outside of the organ, a phenomenon characteristic of diseases such as endometriosis and endometrial cancer, according to a study in mice and human tissue published August 7 in Nature Communications.

It’s been known for years that the two genes, ARID1A and PIK3CA, are associated with the diseases, but until now, it was unclear how. Endometriosis—a painful condition caused by endometrial tissue growing on organs outside of the uterus—and endometrial cancers are “intimately linked,” says Ronald Chandler, a reproductive biologist at Michigan State University and the senior author of the study. In both cases, endometrial cells migrate away from their usual position lining the uterine epithelium.

“Women with endometriosis are at higher risk for diseases such as endometrial cancer and ovarian cancer,” Chandler says. “But what we’ve found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo