Over half of all the cancer genomes that researchers have sequenced share one characteristic: They contain mutational signatures associated with a family of enzymes called APOBEC3, suggesting a role for these enzymes in mutagenesis. So far, limited evidence suggests that the main culprit within the APOBEC3 family is the enzyme APOBEC3B. Though much about the enzyme’s activity remains unknown, the field largely focused on it as the primary enzyme responsible for cancer mutations. But APOBEC3A—previously thought not to play such a prominent role—may actually be responsible for the mutations seen in most cancer cell lines, a paper published July 20 in Nature suggests, making it a potential therapeutic target in cancer.
Dmitry Gordenin, a specialist in APOBEC3 mutagenesis at the National Institute of Environmental Health Sciences who was not involved in the paper, says that the “excellent scientific work” shows that “most of the APOBEC3 mutations [in tumors] come from ...


















