Why DBS Works for Parkinson’s?

Deep-brain stimulation may effectively treat slow movement, tremor, and rigidity in Parkinson’s patients by reducing synchronicity of neural activity in the motor cortex.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

During surgery to implant a permanent DBS device (green with yellow tip) in the brain of a Parkinson’s patient, six recording electrodes (red) were temporarily placed on the surface of the brain. COURTESY OF CORALIE DE HEMPTINNEStimulate the brain of a patient suffering from Parkinson’s disease (PD) via a surgically implanted electrode and there’s no mistaking the results: the person’s slow movement, tremor, and/or rigidity—common symptoms of the neurodegenerative disorder—all but disappear immediately. When the device is turned off, the motor symptoms return in full force. But how deep-brain stimulation (DBS) effects such changes has been unclear.

In a study published yesterday (April 13) in Nature Neuroscience, researchers at the University of California, San Francisco (UCSF), uncovered evidence to suggest that DBS works by reducing the overly synchronized activity of the motor cortex, which controls the body’s skeletal muscles.

Two years ago, UCSF neurosurgeon Philip Starr, postdoc Coralie de Hemptinne, and their colleagues had identified extremely synchronized neural activity in the cortex as a common factor in the Parkinson’s brain. For the new study, the researchers temporarily placed a strip of six recording electrodes over the motor cortex of 23 Parkinson’s patients during surgery to implant a permanent DBS electrode. Over the course of the six-hour surgery, during which patients are awoken to ensure the proper placement of the DBS electrode, “we ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo