Y Chromosome from Early Modern Humans Replaced Neanderthal Y

A selective advantage may have led the modern human Y chromosome to sweep through the Neanderthal population after it was introduced via interbreeding more than 100,000 years ago.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Upper molar of a male Neanderthal from which researchers extracted Y chromosome DNA
I. CREVECOEUR

The Neanderthal Y chromosome is much more closely related to the Y of modern humans than to the Y of Denisovans, another archaic hominin that lived in Eurasia at the same time as Neanderthals, according to a study published today (September 24) in Science. This stands in stark contrast to the rest of the nuclear genome, which has clearly placed Neanderthals and Denisovans as sister groups in a lineage that split from the ancestors of modern humans. The Y chromosome data—the first from Denisovans and the first high-coverage from Neanderthals—suggest that earlier Neanderthals had a Denisovan-like Y chromosome, but that this was replaced by the Y chromosome of modern humans after Neanderthals interbred with them between 370,000 and 100,000 years ago.

“It’s a really a great surprise,” says Mikkel Heide Schierup, an evolutionary biologist at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio