Aging in Mice Linked to Misexpression of Class of Genes

Genes lacking a particular structure known as CpG islands tend to go haywire in older cells, a study finds, potentially contributing to key facets of aging. But it’s not yet clear if the relationship is causal.

Written bySophie Fessl, PhD
| 4 min read
An electron microscopy image of a cell with the nucleolus shown in blue, chromatin in green, and nuclear envelope in red
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Aging is inevitable, and goes along with many changes in cells, tissues, and organs—including DNA damage, mitochondrial dysfunction, and telomere loss. But why we age in the first place and what drives these changes is still unknown. A study published December 15 in Science Advances suggests a possible answer, linking the increased activity of genes lacking long stretches of C and G bases with degeneration and aging.

As cells age, the architecture of chromatin, which packages DNA, unravels. Samuel Beck, a computational biologist at MDI Biological Laboratory, says he and his colleagues set out to explore whether these structural changes contribute to the degenerative changes also associated with aging. Specifically, the researchers focused on stretches of C and G bases called CpG islands (CGI). CGI are present in the promoters of around 60 percent of mammalian genes, termed CGI+ genes, but absent in the remaining 40 percent, called CGI- genes.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH