Characterizing DNA Quadruplexes

Researchers are developing new techniques to better understand how and why knots of DNA are distributed throughout the genome.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

DNA quadruplexIMPERIAL COLLEGE LONDONMost DNA exists in the classic Watson-Crick double helix. But throughout the genome, researchers have found knot-like structures made of hydrogen-bonded guanine tetrads known as quadruplexes. Why these knots form and how they work is still largely mysterious, but these structures are known to affect gene expression and genomic stability. Recent research has also suggested that quadruplexes are particularly prevalent near oncogenes, suggesting they may play a role in the development of cancer.

In a study published this week (September 9) in Nature Communications, researchers in the U.K. presented a novel fluorescent molecule that can tag the structures in living cells by glowing for longer when bound to quadruplexes than when bound to double helical DNA. The researchers reported an ability to visualize when the fluorescent tag was displaced from a quadruplex by another molecule, allowing them to screen for new compounds that also bound the DNA knots.

“Until now, to image quadruplexes in cells researchers have had to hold the cells in place using chemical fixation,” Arun Shivalingam, who participated in the research during his PhD work at Imperial College London, said in a press release. “However, this kills them and brings into question whether the molecule ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA