Characterizing DNA Quadruplexes

Researchers are developing new techniques to better understand how and why knots of DNA are distributed throughout the genome.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

DNA quadruplexIMPERIAL COLLEGE LONDONMost DNA exists in the classic Watson-Crick double helix. But throughout the genome, researchers have found knot-like structures made of hydrogen-bonded guanine tetrads known as quadruplexes. Why these knots form and how they work is still largely mysterious, but these structures are known to affect gene expression and genomic stability. Recent research has also suggested that quadruplexes are particularly prevalent near oncogenes, suggesting they may play a role in the development of cancer.

In a study published this week (September 9) in Nature Communications, researchers in the U.K. presented a novel fluorescent molecule that can tag the structures in living cells by glowing for longer when bound to quadruplexes than when bound to double helical DNA. The researchers reported an ability to visualize when the fluorescent tag was displaced from a quadruplex by another molecule, allowing them to screen for new compounds that also bound the DNA knots.

“Until now, to image quadruplexes in cells researchers have had to hold the cells in place using chemical fixation,” Arun Shivalingam, who participated in the research during his PhD work at Imperial College London, said in a press release. “However, this kills them and brings into question whether the molecule ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo