Commensal Bacterium Reduces ALS Symptoms in Mice

Boosting the levels of Akkermansia muciniphila in mouse guts slowed the progression of an ALS-like disease, while two other microbiome members were associated with more severe symptoms.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, MARCIN KLAPCZYNSKI

In a mouse model of amyotrophic lateral sclerosis, animals that had ample levels the bacterium Akkermansia muciniphila in their gut microbiomes fared better than those carrying almost no members of the species, which produces vitamin B3, according to a study published this week (July 22) in Nature. Moreover, restoring A. muciniphila in mice that had low levels slowed the progression of their disease.

“When we gave it to ALS-prone mice it very significantly improved ALS severity in these mice,” coauthor Eran Elinav, a microbiome researcher at the Weizmann Institute of Science in Israel and of the German Cancer Research Center in Heidelberg, tells The Guardian. On the other hand, two other members of the microbiome—Ruminococcus torques and Parabacteroides distasonis—were more common in mice with severe disease.

The researchers suspect that A. muciniphila’s production of B3 may have something to do with its apparently therapeutic effects. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA