Coronavirus Mutations Could Muddle COVID-19 PCR Tests

Researchers find that SARS-CoV-2 variants can evade primer-probe sets and recommend that diagnostic assays include multiple targets for reliability.

Written byJack J. Lee
| 4 min read
a person in a white lab coat with a blue glove inserting a clear pcr tube into a which thermocycler while holding an orange box

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, DHDEZVALLE

Changes to the SARS-CoV-2 genome—including some of those found in currently circulating variants—can negatively affect the detection of the virus by reverse transcription (RT) PCR, according to a study published on April 26 in the Journal of Clinical Microbiology. The researchers propose that mutations in the loci recognized by DNA primers may reduce the amplification of viral sequences and, as a result, potentially hinder the detection of the virus in samples from COVID-19–positive individuals.

This finding isn’t cause for full-blown panic, the authors say. “We thought maybe this could be more common than not. But it turns out, it’s actually fairly rare,” says coauthor David Wang, a virologist at Washington University. Wang and his colleagues recommend that diagnostic tests include more than one target to ensure proper SARS-CoV-2 detection. While a number of products already include multiple genetic targets, some COVID-19 RT-PCR assays authorized for emergency ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of jack j. lee in black and white

    Jack is a science writer based in the San Francisco Bay Area. He has a bachelor’s degree in biology from Caltech and a PhD in molecular biology from Princeton University. He also completed a master’s in science communication at the University of California, Santa Cruz. In July 2021, he began a communications fellowship at the National Cancer Institute’s Division of Cancer Prevention. You can find more of his work at www.jackjleescience.com.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies