Cracking Down on Cancer: A Profile of Owen Witte

Through his studies on cancer-causing viruses, the University of California, Los Angeles, professor has helped develop lifesaving treatments.

Written byDiana Kwon
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: Acute lymphoblastic leukemia blood smear
© ISTOCK.COM, JXFZSY

Sitting at a lab bench at MIT in the late 1970s, Owen Witte finally had to admit he was stuck. He had identified a cancer-causing protein encoded in the genome of the Abelson murine leukemia virus, which infects mice. Prior work had led Witte to hypothesize that this protein should be a kinase, an enzyme that attaches phosphoryl groups to amino acids. But after double- and triple-checking his methods and repeating the experiments several times, he failed to find evidence that this was the case.

Witte’s idea that the Abelson murine leukemia virus (A-MuLV) protein should be a protein kinase stemmed primarily from work by molecular biologist Raymond Erikson, then at the University of Colorado, and his colleagues. They had shown that the oncogenic viral gene src was associated with protein kinases, and Witte expected to find something similar with A-MuLV. He ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

April 2020

Exercise for Cancer

Molecular clues link physical activity to improved patient outcomes

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control