CRISPR Gene Editing Deletes, Shuffles More Genes than Intended

The DNA-cutting enzyme used in the technique is not as precisely targeted as scientists had thought, and investors take notice.

Written byAshley Yeager
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

CRISPR gene editing can create large numbers of unwanted DNA changes that may go undetected, researchers report today (July 16) in Nature Biotechnology. The findings suggest that some potential treatments using the gene-editing tool may not yet be safe to test in humans.

“Anyone thinking of using this technology for gene therapy” should proceed with caution, and “check for possible harmful effects,” study coauthor Allan Bradley, a geneticist at the Wellcome Sanger Institute, tells Reuters.

The data show that CRISPR’s DNA-cutting enzyme can delete or rearrange large numbers of genes beyond what it is designed to edit. The findings add to previous studies that have shown that CRISPR and other gene-editing systems can cause off-target effects and even possibly increase the risk that some edited cells could become cancerous when certain genes that should be active are not functioning properly.

The changes to DNA have been “seriously underestimated,” Bradley tells ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies