CRISPR Gene Editing Prompts Chaos in DNA of Human Embryos

Three studies identify unintended consequences of gene editing in human embryos, including large deletions and reshuffling of DNA.

amanda heidt
| 3 min read
gene, CRISPR, CRISPR-Cas9, gene editing, human embryo, chromosome, mutation, deletion

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, ELENABS

The ability of CRISPR gene-editing technology to safely modify human embryos has been cast into doubt after several recent papers described massive disruptions to DNA in embryos subjected to editing.

Each of the three papers, published this month without peer review on the preprint server bioRxiv, intended to edit only a single gene. But results showed large-scale, unintended DNA deletions and rearrangements in the areas surrounding the targeted sequence. While past research has shown that gene editing can lead to mutations far away from the targeted region, these studies instead draw attention to more localized damage involving larger sequences of DNA that could be overlooked by traditional safety screenings, Nature reports.

These studies were intended only for research purposes, meaning the embryos were destroyed after the experiment ended. But in response to their findings, many researchers are voicing their objections to further editing. The field itself ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo