Disturbed Microbes Contribute to Lung Damage from Oxygen Treatment

In humans, higher oxygen levels during ventilation are tied to an altered bacterial composition in the lungs, and mouse experiments show a causative link.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, PIXINOO

When a patient is suffering respiratory failure, such as can occur with COVID-19, breathing oxygen-enriched air may save their life, but there’s a chance it may also damage their lungs. The cause of the injury, at least in part, is an oxygen-induced shift in the balance of bacterial species in the lung, according to the results of a study in Science Translational Medicine today (August 12).

“It’s an important paper in establishing that there is a role of the microbiome in hyperoxia-induced lung injury,” says pulmonologist Alison Morris of the University of Pittsburg who was not involved in the research. The study “opens the door to looking more closely at the impact [of the microbiome] and how we can modulate it” for lung therapies, she continues.

“It’s a really neat set of experiments. They’ve taken a clinical conundrum, delved into human samples and then they’ve [followed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours