RNA interference is a powerful gene silencing technique in the culture dish, but harnessing that power for potential clinical use is not straightforward. Delivering short interfering RNAs (siRNAs) to target cells in the body is difficult, explains MIT’s Paula Hammond, “because siRNA gets easily degraded, so you need to start out with a lot to allow for significant loss.”
Researchers have traditionally complexed or encapsulated siRNA molecules with various types of polymers or lipids with the aim of protecting the siRNA in transit and assisting its uptake into cells. But such polymers can be toxic, especially when used in the large amounts necessary to protect siRNAs.
“[We wanted] to make a system where the cargo was its own carrier,” says Hammond, whose research team came up with a potential solution to the polymer problem. Her team synthesized strings of approximately 500,000 tandem copies of an siRNA sequence that self-organized into ...