Epigenetic Changes Can Cause Cancer

A transgene designed to attract methylation to the promoter of a tumor-suppressor gene leads to tumorigenesis in a mouse model.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAChanges in gene methylation alone can trigger cancer, according to a mouse study published today (July 25) in the Journal of Clinical Investigation. Working in mouse stem cells, researchers from Baylor College of Medicine in Houston, Texas, introduced a genetic segment designed to attract methyl groups—chemical modifiers that lead to gene silencing—into the mouse genome, upstream of the gene p16, which normally functions to regulate cell division. This transgenic segment was made up of motifs from the human genome, which—as a previous study has shown—are associated with promoter methylation and gene silencing during human development.

Baylor’s Lanlan Shen and her colleagues have now shown that among mice in which this methylation magnet was introduced, 27 percent developed lung cancer, leukemia, or sarcomas, while wild-type controls did not develop tumors. Five percent of mice that inherited one copy of the transgene and one wild-type copy also developed tumors.

“For many years we’ve been very convinced that DNA methylation changes and epigenetic silencing contribute to human cancer, and there have been a lot of observations that support that concept,” Peter Jones, research director and head of the cancer epigenomics lab at Michigan’s Van Andel Research Institute who was not involved in the work, told The Scientist. “What [this] paper does, which I think is very clever, is to selectively silence a tumor-suppressor ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer