Epigenetic Changes Can Cause Cancer

A transgene designed to attract methylation to the promoter of a tumor-suppressor gene leads to tumorigenesis in a mouse model.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAChanges in gene methylation alone can trigger cancer, according to a mouse study published today (July 25) in the Journal of Clinical Investigation. Working in mouse stem cells, researchers from Baylor College of Medicine in Houston, Texas, introduced a genetic segment designed to attract methyl groups—chemical modifiers that lead to gene silencing—into the mouse genome, upstream of the gene p16, which normally functions to regulate cell division. This transgenic segment was made up of motifs from the human genome, which—as a previous study has shown—are associated with promoter methylation and gene silencing during human development.

Baylor’s Lanlan Shen and her colleagues have now shown that among mice in which this methylation magnet was introduced, 27 percent developed lung cancer, leukemia, or sarcomas, while wild-type controls did not develop tumors. Five percent of mice that inherited one copy of the transgene and one wild-type copy also developed tumors.

“For many years we’ve been very convinced that DNA methylation changes and epigenetic silencing contribute to human cancer, and there have been a lot of observations that support that concept,” Peter Jones, research director and head of the cancer epigenomics lab at Michigan’s Van Andel Research Institute who was not involved in the work, told The Scientist. “What [this] paper does, which I think is very clever, is to selectively silence a tumor-suppressor ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems