Exome Sequencing Helps Crack Rare Disease Diagnosis

Clinical analyses of patients’ gene sequences are helping to provide answers where none were available before.

Written byAmanda B. Keener
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

KATE WHITMOREOn a sunny day near Perth, Australia, two-year-old Scarlett Whitmore stares intently at her left shoulder. With absolute concentration, she raises her head to look at her physical therapist, who is holding onto Scarlett’s arm to keep her steady. “I’m so proud of you,” her mother, Kate Whitmore, cheers as she films the session with her camera phone. Looking proud herself, Scarlett rolls onto her back, stretches out her arms and legs, and smiles broadly. Her smile is infectious. Her green eyes grow wide whenever she flashes her toothy grin—the inspiration for “Scarlett’s Smile,” the name of the foundation her parents started to raise money for Scarlett’s medical expenses.

Scarlett has poor hearing and vision and hasn’t learned to sit up on her own, stand, walk, or speak. And for the first year of her life, her parents had no idea why. Just after Scarlett was born, “I remember my husband saying in the hospital, ‘She doesn’t cry,’ and I just said, ‘She’s a good baby,’” says Kate. After five months, however, Scarlett failed to meet typical milestones, such as making eye contact with her parents. And then the tests began. Full workups on her blood and spinal fluid didn’t suggest anything amiss. Neither did a test for large-scale chromosomal abnormalities. A viral screen revealed that Scarlett had been exposed to cytomegalovirus, a known cause of brain damage when contracted during development. But a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas