Exploring the Matrix: A Profile of Zena Werb

The cell and molecular biologist unveiled a role for the breakdown of proteins in the extracellular matrix in both healthy and pathogenic cells.

Written byDiana Kwon
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: To learn how cancer develops in the mammary glands of mice, Zena Werb has studied hyperplasia in MMTV-neu tumors. ©Vicki Plaks

When no one in Zena Werb’s University of California, San Francisco lab wanted to investigate whether elements of the three-dimensional web of macromolecules surrounding cells could communicate with those cells, she decided to do the experiment herself.

It was the 1980s, a time when scientists saw this web, called the extracellular matrix (ECM), as primarily a support structure for cells. But Werb’s study showed that proteins within the matrix are involved in signaling. Specifically, she discovered that integrins, transmembrane molecules that help adhere a cell to its surroundings, not only bind but respond to ECM proteins, activating intracellular signaling pathways—regulating, for example, the expression of genes that encode ECM-degrading enzymes called matrix metalloproteinases (MMPs). The extracellular matrix was more than just a scaffold, Werb realized—a concept that became ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

December 2019

Markers of Alzheimer's

Hints about brain health can be found in the blood

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo