Gene Exchange Among Gut Bacteria Is Linked to Industrialization

A study of human populations around the world detects differing rates of horizontal gene transfer in the microbiome depending on what kind of society those people live in.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A Global Microbiome Conservancy member processes microbiome samples in Tanzania.
© GLOBAL MICROBIOME CONSERVANCY / PHOTO BY C. CORZETT

The frequency of gene exchange among the microbes in a person’s gut is linked to the sort of society that person lives in, according to a large international study published today (March 31) in Cell.

The researchers analyzed bacterial DNA to identify recent cases of horizontal gene transfer (HGT), a process that allows individual cells to mix up their genomes and acquire new functions from other bugs in the microbial community without having to reproduce. The team found that species in the gut frequently exchange genetic material, and that they do it more if they’re living inside people in industrialized or urban societies than if their hosts reside in rural or less developed environments.

“What’s novel and really impressive here” is the team’s use of whole-genome sequencing to study thousands of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours