Gene Exchange Among Gut Bacteria Is Linked to Industrialization

A study of human populations around the world detects differing rates of horizontal gene transfer in the microbiome depending on what kind of society those people live in.

Written byCatherine Offord
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A Global Microbiome Conservancy member processes microbiome samples in Tanzania.
© GLOBAL MICROBIOME CONSERVANCY / PHOTO BY C. CORZETT

The frequency of gene exchange among the microbes in a person’s gut is linked to the sort of society that person lives in, according to a large international study published today (March 31) in Cell.

The researchers analyzed bacterial DNA to identify recent cases of horizontal gene transfer (HGT), a process that allows individual cells to mix up their genomes and acquire new functions from other bugs in the microbial community without having to reproduce. The team found that species in the gut frequently exchange genetic material, and that they do it more if they’re living inside people in industrialized or urban societies than if their hosts reside in rural or less developed environments.

“What’s novel and really impressive here” is the team’s use of whole-genome sequencing to study thousands of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH