How Commensal Gut Bacteria Keep Pathogens in Check

Recent studies describe how resident microbiota appear to outcompete unwelcome visitors, either with superior weaponry or by guzzling up local resources.

alejandra manjarrez
| 7 min read
illustration of colorful microbes inside a person's stomach and intestines

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: © ISTOCK.COM, TLFURRER

The gut’s natural inhabitants are key to preventing and fighting some infections. Take Clostridioides difficile, a bacterium causing severe diarrhea that can be life-threatening: it is more likely to cause infection in a gut with an altered microbiota, often due to antibiotic treatment. Conversely, fecal microbiota transplants from healthy donors have proven useful to treat the disease, further evidence for the role of commensal bacteria in warding off the infection.

How commensals fight against such pathogens is beginning to come into focus. Warfare—through toxic compounds or other weaponry—and competition for resources are two common strategies. Now, a trio of studies published this month lends insight into how specific commensals might keep the gut safe from colonization by pathogens using these tactics. Together, the findings hold promise for the future design and prescription of probiotics to help ward off infectious diseases.

Together with her colleagues, Melanie Blokesch, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit