How Wandering Nuclei Shape Developing Embryos

As cricket blastoderms form, cell nuclei are pulled into an egg’s remaining empty space to form the new cell layers that will shape the developing animal.

Written byViviane Callier
| 3 min read
Microscopy image of a cricket embryo, illuminated in green, pinched near one end, with one side full of bright green dots representing cell nuclei
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Early in development, all animal embryos pass through an almost identical stage where they form a blastoderm, which is a hollow ball of a few thousand cells. From that hollow ball, layers of cells start to fold into shapes that will become different parts of the body. Although the behavior of cells and the patterning of the embryo after the blastoderm stage is well-understood, how the blastoderm itself is made has remained a longstanding mystery.

Now, a team of biologists and applied mathematicians at Harvard University in Massachusetts have developed a framework for understanding the general principles by which cell nuclei move and arrange themselves during the earliest stages of embryonic development to form the blastoderm. In their research, which was published July 6 in Nature Communications, the researchers made specific predictions about how the blastoderm would form in a variety of insect eggs and validated them using mathematical models ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo