Human Protein Dissolves Bacterial Membranes

The protein, apolipoprotein L3, destroys invading microbes by acting as a detergent in the cytosol.

abby olena
| 4 min read
A computer-generated graphic showing a cross-section of red-colored bacteria, with the locations of the protein APOL3 labeled in green.

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Before killing Salmonella, the detergent-like protein APOL3 (green) must get through the bacteria’s protective outer membrane (red), shown in cross section here.
R. GAUDET ET AL., SCIENCE, 2021

When the mammalian immune system detects a pathogen, a kind of immunological call to arms is precipitated by the release of a cytokine known as interferon-gamma, which induces the transcription of tons of host genes in cells throughout the body, not just in immune cells. But the identities of all those genes and what they do to protect the host aren’t well understood. In a study published today (July 15) in Science, researchers found that one gene stimulated by interferon-gamma, apoplipoprotein L3 (APOL3), produces a protein that can destroy bacteria that sneak into host cells by acting like a detergent—surrounding the lipids integral to the pathogens’ cell membranes and causing them to break apart.

The paper is “important for a new understanding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio