Image of the Day: Liquid Compartments

Membraneless organelles appear highly sensitive to ion concentrations in their environment.

Written byNicoletta Lanese
| 1 min read
RNA droplets

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Tweaking the number of charged particles near membraneless organelles restricts how the liquid compartments can form, researchers reported August 21 in Scientific Reports. Membraneless organelles store molecules within cells and serve as hubs for biochemical reactions, but little is known about how they form or function. Using a model system composed of peptides, RNA, and a buffer solution, researchers investigated how the fluid droplets form in different ionic environments.

When concentrations of biologically important cations—calcium and magnesium—were low, RNA and proteins clung together to form membraneless droplets. But when cation concentrations rose, only RNA complexes could form.

“It’s interesting because you haven’t changed the basic ingredients,” says coauthor Priya Banerjee, a physicist at the University at Buffalo, in an announcement. “But when you alter the ionic environment, you find that these organelles are highly tunable. They ‘switch’ from one type to the other, with each type having a distinct internal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH