Image of the Day: Xenopus Pigment

Researchers recently used CRISPR single-guide RNAs to alter genes involved in pigmentation in frog embryos.

Written byThe Scientist
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Embryo at the neurula stage, with tracer localization (green) and pigment loss on the right side of the developing embryo. (Bottom) A more developed embryo, also displaying tracer localization and pigment loss on its right side. VANJA KRNETA-STANKIC

A single frog can come with only half its colors. At a workshop on the African clawed frog (Xenopus laevis) and CRISPR applications at the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, researchers used single-guide RNAs (sgRNAs) to alter pigment genes in the embryos of the amphibian. The scientists injected slc45a2-sgRNA, Cas9 protein and Alexa 488:dextran tracer into one cell of a two-cell embryo. The treatment resulted in half of the embryo lacking pigment. The researchers describe the procedure they used in a study published in February in Genetics.

B. Delay et al., “Tissue-specific gene inactivation in Xenopus laevis: knockout of Ihx1 in the kidney with CRISPR/Cas9,” Genetics, doi:10.1534/genetics.117.300468, 2018.

Correction (May 18): An earlier version of this article erroneously referred to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies