Improving Reproducibility with Automated Liquid Handling

Automated liquid handling reduces manual labor and improves precision, reproducibility, and throughput.

Written byEppendorf and The Scientist Creative Services Team
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Transferring and dispensing liquids are simple and mundane tasks that have profound influences on experimental results. Using manual single-channel pipettes to transfer samples or reagents is commonplace among researchers. Incorporating multi-channel pipettes improves productivity to an extent, but that benefit diminishes as the number and scale of experiments increase. Researchers can improve the speed, precision, and reproducibility of their liquid handling by making the switch to an automated system.

While manually dispensing liquids, user-to-user variation in pipette handling introduces errors. Improper pipette handling, inconsistency in aspiration and dispensing rhythm, and variability in pipetting speed are common examples of user error that reduce experimental efficiency and precision. For example, excessive or rough pipetting of protein or nucleic acid solutions degrades sample quality. Additionally, users can easily cross-contaminate their samples, which leads to unreliable results or failed experiments.

In addition to operator error, the characteristics of different liquid types contribute to inaccuracies. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo