Infographic: How Stray DNA Can Land in Double-Strand Breaks

A study on yeast illuminates how insertions may occur.

katya katarina zimmer
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

When a yeast cell is engineered to lack the enzyme Dna2, double-strand breaks in its DNA (1), collect stray sequences from all over the genome. Authors of a new paper suggest these insertions arise because Dna2 normally degrades excess DNA created during replication, such as so-called 5’ flaps (2a). Another possibility is that the rogue DNA is shed from dying cells (2b), although it is unclear whether Dna2 could be involved in that process. The excess bits can be integrated into breaks via nonhomologous end joining, in which repair enzymes weld the ends of severed DNA back together (3).

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo