Leprosy Bacterium Rejuvenates Armadillos’ Livers

Mycobacterium leprae appeared to reprogram the animals’ livers to a state partially resembling early development, resulting in healthy organ growth.

Written byAlejandra Manjarrez, PhD
| 4 min read
A nine-banded armadillo walking on dry grass.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The liver has an extensive regeneration capacity compared to other organs. However, repetitive injury—for instance, from chronic viral infection or the increasingly common nonalcoholic fatty liver disease—can lead to severe long-term damage for which the only treatment is organ transplantation.

One of the challenges in tissue regeneration is to induce organ growth without also bringing about tumor formation or other abnormalities. A new study published today (November 15) in Cell Reports Medicine suggests that bacteria causing leprosy may hold the key to boosting the organ’s regenerative capacity. Specifically, the authors found that nine-banded armadillos (Dasypus novemcinctus) infected with Mycobacterium leprae developed enlarged livers without any visible damage.

“I think this is clear proof that there’s [regenerative] mechanisms that we weren’t aware of that are happening in mammals,” says Nina Tirnitz-Parker, a liver disease and regeneration researcher at the Curtin Medical School and Curtin Health Innovation Research Institute in Australia. In ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH