Massively Parallel Perturbations

Scientists combine CRISPR gene editing with single-cell sequencing for genotype-phenotype screens.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SINGLE-CELL SCREEN: A library of guide RNAs—each targeting a unique gene for CRISPR-based interference and carrying a unique barcode sequence—is introduced into a population of cells at a concentration that results in one guide RNA entering one cell, on average. Individual cells are then sorted into droplets bearing uniquely barcoded polyT primers, which are used to extract the cell’s mRNA. Sequencing the RNA then reveals both the introduced genetic mutations—determined by the guide RNA—and the transcriptional effect of that perturbation—determined by the collection of mRNAs bearing the cell-specific barcode (from the polyT primer).© GEORGE RETSECK

Determining how the genes in a cell affect its function is the overarching objective of molecular genetic studies. But most genotype-phenotype screens are limited by the number of genetic perturbations that can be feasibly measured in one experiment. In short, the more genetic disruptions examined, the more costly and time-consuming the experiments become.

Indeed, says Trey Ideker of the University of California, San Diego, very few large-scale genotype-phenotype screens have been performed, and those that have were mammoth undertakings. Now, thanks to two highly similar techniques—one called Perturb-Seq, developed by Aviv Regev of the Broad Institute and colleagues, and another, designed by Ido Amit of the Weizmann Institute in Israel and colleagues, called CRISP-Seq—it is possible to study numerous genetic manipulations, individually or combined, in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

March 2017

Music

The production and neural processing of musical sounds, from birdsong to human symphonies

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH