ROBOT CENTRAL: A grad student examines a yeast colony array from the 192-plate carousel of one of eight BioMatrix robots housed together in Charles Boone’s lab at the University of Toronto, where his lab studies gene networks in yeast. KAREN FOUNK
Charlie Boone’s lab at the University of Toronto doesn’t think small. His 21-member group is trying to map gene networks in yeast at the genomic scale. To do that, they introduce two different, relatively benign mutations into the same haploid yeast strain, then look for lethal combinations.
“That’s a genetic interaction,” explains Michael Costanzo, a senior research associate in the lab, “a genetic relationship that tells us that the two genes probably work together and somehow compensate for each other.”
The process is simple enough. S. cerevisiae of one mating type and bearing one mutation are mated to cells of the opposing mating type harboring a different mutation, and then driven through meiosis to create double-mutant progeny, whose fitness is assessed by growth on solid ...