Microbiology Goes High-Tech

Out with toothpicks and pipettors; in with automation.

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ROBOT CENTRAL: A grad student examines a yeast colony array from the 192-plate carousel of one of eight BioMatrix robots housed together in Charles Boone’s lab at the University of Toronto, where his lab studies gene networks in yeast. KAREN FOUNK

Charlie Boone’s lab at the University of Toronto doesn’t think small. His 21-member group is trying to map gene networks in yeast at the genomic scale. To do that, they introduce two different, relatively benign mutations into the same haploid yeast strain, then look for lethal combinations.

“That’s a genetic interaction,” explains Michael Costanzo, a senior research associate in the lab, “a genetic relationship that tells us that the two genes probably work together and somehow compensate for each other.”

The process is simple enough. S. cerevisiae of one mating type and bearing one mutation are mated to cells of the opposing mating type harboring a different mutation, and then driven through meiosis to create double-mutant progeny, whose fitness is assessed by growth on solid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies