Microglia Cause Cognitive Decline in Obese Mice

The brain’s immune cells gobble up synapses in the hippocampi of rodents fed high-fat or high-sugar diets.

Written byDiana Kwon
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Obesity is on the rise across the globe. The worldwide prevalence of the condition has nearly tripled over the last four decades, and approximately 13 percent of adults were obese in 2016. This staggering rise poses a public health concern: not only is obesity tied to bodily ailments such as cardiovascular disease and diabetes, epidemiological investigations have revealed that it is also linked to cognitive decline—and higher chances of developing dementia and other brain-related disorders later in life.

Researchers have recently started to shed light on how weight gain affects the brain, and over the last few years, microglia, the brain’s resident immune cells, have emerged as the key culprit. Several rodent studies paint a picture of activated microglia gobbling up dendritic spines that form synapses in obese animals’ brains as the cause of cognitive decline. A study published today (September 10) in the Journal of Neuroscience provides strong new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH