Mysterious Immune Cells Change the Gut Lining to Accommodate Diet

A study shows gamma-delta T cells in mice respond to shifts in nutrients by changing the cellular composition of the intestinal epithelium.

black and white photograph of stephanie melchor
| 4 min read
gamma delta t cell intestine gut mouse mice diet nutrient epithelial cell remodeling immune system

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

With only a single layer of epithelial cells standing between what we’ve eaten and our inner tissues, the intestinal lining is constantly facing a unique conundrum: how does it absorb nutrients from food while maintaining a barrier against potentially infectious pathogens? What’s more, how does it maintain this balance in the face of constantly shifting environmental circumstances? A study using mice published in Science last month (March 19) may have unearthed a clue.

The researchers show that poorly understood immune cells called gamma-delta T cells are responsible for altering the relative abundance of various epithelial cell types, effectively specializing the gut to maximize nutrient absorption in the face of a changing diet.

To first author Zuri Sullivan, this finding was really surprising “because not only is it the first description of an immune cell being directly involved in nutrition,” she says, “but it’s a completely new function for these gamma-delta ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • black and white photograph of stephanie melchor

    Annie Melchor

    Stephanie "Annie" Melchor is a freelancer and former intern for The Scientist.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb