Neanderthal-Human Hybrid Unearthed

DNA from the 40,000-year-old bones of a modern human found in Europe contains Neanderthal genes.

Written byBob Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

DNA taken from a 40,000-year-old modern human jawbone from the cave Pestera cu Oase in Romania reveals that this man had a Neandertal ancestor as recently as four to six generations back.IMAGE, SVANTE PAABO, MAX PLANCK INSTITUTE FOR EVOLUTIONARY ANTHROPOLOGYBetween 35,000 and 45,000 years ago, modern humans spread throughout Europe. Around the same time, Neanderthals disappeared from the landscape—but not before interbreeding with Homo sapiens. Recent research has revealed that all non-Africans living today retain a genetic trace—1-3 percent of the genome—of Neanderthal ancestry. And 40,000 years ago, human genomes may have contained twice as much Neanderthal DNA, according to a study published today (June 22) in Nature.

Genetic material recovered from 40,000-year-old human bones unearthed in Romania harbors about 6-9 percent Neanderthal DNA, the study reports. Some of this DNA was contained in three relatively large chromosome segments, suggesting the individual had a Neanderthal ancestor only four to six generations back. “I think the conclusions are quite clear, and it’s really quite remarkable that they were lucky to find a hybrid that was so recent to be able to date it to a few generations back,” said Rasmus Nielsen, a University of California Berkeley population geneticist who was not involved with the work.

“What’s amazing about this sample is that we were so lucky to find it,” agreed Harvard Medical School population geneticist David Reich, a senior author on the paper.

Reich ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research