New “Prime Editing” Method Makes Only Single-Stranded DNA Cuts

In demonstrations in cell lines, the technique has a similar efficacy to CRISPR-Cas9, but fewer off-target effects.

Written byEmma Yasinski
| 4 min read
prime editing crispr cas9 genome editing techniques

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, CIPHOTOS

A new gene editing technique called prime editing, tested in human and mouse cells, rewrites DNA by only cutting a single strand to add, remove, or replace base pairs. The method may allow researchers to edit more types of genetic mutations than existing genome-editing approaches such as CRISPR-Cas9, researchers report today (October 21) in Nature.

Emma Haapaniemi, a group leader at the Center for Molecular Medicine Norway who studies gene editing to treat rare diseases and wasn’t part of the work to develop prime editing, tells The Scientist that the approach is “innovative and novel,” though of course, the technique is “still a prototype” and will need to be refined.

The discovery that CRISPR-Cas9 could be harnessed and used to edit animal and human genes ushered in a new era of genetic research over the past several years. The technique has become an indispensable tool in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control